
D

S
D

a

A
R
R
A
A

K
D
P
M
A

1

o
a
p
n
r
m
t

u
t
v
e
t
o
c
u
I
t
d
t
t
t
t

0
d

Journal of Power Sources 196 (2011) 8472– 8483

Contents lists available at ScienceDirect

Journal  of  Power  Sources

jou rna l h omepa g e: www.elsev ier .com/ locate / jpowsour

irect  methanol  fuel  cells:  A  database-driven  design  procedure

.F.J.  Flipsen ∗, C.  Spitas
elft University of Technology, School of Industrial Design Engineering, Landbergstraat 15, 2627 CE Delft, The Netherlands

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 9 March 2011
eceived in revised form 23 May 2011
ccepted 3 June 2011
vailable online 13 June 2011

a  b  s  t  r  a  c  t

To  test  the  feasibility  of  DMFC  systems  in  preliminary  stages  of  the  design  process  the design  engineer
can  make  use  of  heuristic  models  identifying  the  opportunity  of  DMFC  systems  in a  specific  application.
In  general  these  models  are  to generic  and  have  a  low  accuracy.  To  improve  the  accuracy  a  second-order
model  is  proposed  in this  paper.  The  second-order  model  consists  of  an evolutionary  algorithm  written  in
eywords:
irect methanol fuel cells
reliminary design
odel

lgorithm

Mathematica,  which  selects  a component-set  satisfying  the  fuel-cell  systems’  performance  requirements,
places  the  components  in  3D  space  and  optimizes  for volume.  The  results  are  presented  as  a 3D  draft
proposal  together  with  a feasibility  metric.  To  test  the  algorithm  the  design  of  DMFC  system  applied  in
the MP3  player  is  evaluated.  The  results  show  that  volume  and  costs  are  an  issue  for  the  feasibility  of  the
fuel-cell  power-system  applied  in  the  MP3  player.  The  generated  designs  and  the  algorithm  are  evaluated
and recommendations  are  given.
. Introduction

In the past 10 years more portable electronics have entered
ur lives. All of these electronic devices are powered by a battery
nd mainly the rechargeable lithium ion battery. The market for
ortable electronic devices is increasing. Connectivity to the inter-
et and more functionality makes these devices long for a longer
un-time and higher power use [1–3]. To increase run-time a direct
ethanol fuel cell (DMFC) power system has a lot of potential due

o its high energy dense fuel, methanol.
In [4] different tools and methods are described which can be

sed to design or select a power system for a specific applica-
ion. In general a systematic approach is used to bring an idea,
ia specifications, conceptualization and embodiment to finally an
ngineered product. The identification tools like PowerQuest [5],
he CES method [6,7] and working with Ragone plots [8,9] are based
n normalized figures like energy density, and therefore not always
orrect. The numbers outputted from these programs cannot be
sed to evaluate concepts but merely identifies the opportunity.

mprovement in these tools is needed giving more than just initia-
ives or making alternative power sources visible. Tools like T-max,
eveloped at Jet Propulsion Lab [10,11], evaluate the power sys-
em instantly when changes in the design are made, are a must for
he concurrent design engineer. Generalized and instant evaluation

ools should be developed to give the designer improved basis for
heir concept choice.

∗ Corresponding author. Tel.: +31 15 2789398; fax: +31 15 2781839.
E-mail address: s.f.j.flipsen@tudelft.nl (S.F.J. Flipsen).
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To test the feasibility of DMFC systems applied in portable elec-
tronic devices during the preliminary design stages a first-order
heuristic model is presented in Flipsen [4].  This model was based
on a case-study by Motorola [12,13] and two  design cases [14,15]
the weight and volume of a DMFC system is calculated by breaking
down the system into five major contributors: (i) the fuel cell stack,
(ii) the balance of plant (BOP), (iii) the empty space, (iv) the interme-
diate accumulator and (v) the fuel tank. In Section 4 the first-order
model is briefly evaluated by two commercially available DMFC
power systems. The output of the model shows a wide range in the
predicted system volumes, making the model low accurate.

To improve the first-order model the results’ ranges should be
narrowed down, making the model more accurate. This can be done
by evaluating more commercially available DMFC systems. Due to
the low amount of commercially available DFMC power systems,
it is justified to use a more accurate, second-order model for opti-
mization of the first-order model. This paper will elaborate further
on the on the second-order model (Section 3). The second-order
model is a database-driven algorithm which chooses and evalu-
ates a set of commercially available components to be used in
a low-power DMFC power systems. The algorithm is presented
and implemented in a software program written in Mathemat-
ica. Based on the applications’ load-profile the program chooses
a component-set which suffices the fuel-cell systems’ performance
requirements. The placing of the chosen component-set is opti-
mized for volume and a draft proposal together with a feasibility
metric is presented to the designer. To test the algorithm the design

of DMFC system applied in the MP3  player is evaluated (Section 4).
The results are discussed and conclusions are drawn in Sections
5–7 on the feasibility of the power system and the algorithm is
evaluated.

dx.doi.org/10.1016/j.jpowsour.2011.06.014
http://www.sciencedirect.com/science/journal/03787753
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. Different orders of modeling

In this paper we define four orders of modeling, from basic com-
arison based tables and figures (zero order), through the heuristic
pproach (first order) to the automated design using algorithm
second and third order). The first two approaches use normalized
quations and are to be used without the computer. The higher the
rder of modeling the higher the accuracy, but also the complexity.
or higher order models the computer is used to evaluate multi-
le designs on one or more objectives. The second order model
ptimizes for ‘basic’ properties, while the third order model also
ncludes other more ‘specific’ properties.

.1. Zero order model: general comparison

In Flipsen [16] a comparison between power sources is made,
ased on normalized values for energy, power and costs. This type
f model we  like to call the ‘zero order model’ giving good indi-
ation what the overall opportunity is for a specific power system.
lthough power systems are made visible to the designer with sim-
le comparing plots, this method does not identify an opportunity
or a specific power source applied in a portable electronic device
hich exists or has ‘to be designed’.

.2. First order model: heuristic approach to modeling a DMFC
ower source

The next order model, the ‘first order model’, will help the
esigner in evaluating the feasibility of a power source (in our case
he DMFC power system) in comparison with other power sources
in our case the lithium-ion battery). Based on a case-study by

otorola [12,13] and two design cases [14,15] the weight and vol-
me  of a DMFC system is calculated by breaking down the system

nto five major contributors: (i) the fuel cell stack, (ii) the balance of
lant (BOP), (iii) the empty space, (iv) the intermediate accumula-
or and (v) the fuel tank. The first-order model gives good feedback
o the designer whether a DMFC system is feasible and how large it
ill be. This type of modeling is generally used in conceptual design,

nd known as a “rule of thumb”, where equations give the designer
reliminary insight in a specific problem or identify opportunities
or specific technologies. This type of modeling can best be used
hen no computer is available.

The input data in the model is moderate, but still needs knowl-
dge of the designed or to be designed device. User profile is needed
hich is used to define a load profile. The designer has to know how
igh the load will be when the user uses a certain function. Devel-
pment of the load profile in the form of a power-to-time function
r graph is needed to give a good estimate of the DMFC hybrid
hysical performance. The designer has to fall back on its electron-

cs knowledge and describe the power needed for every function of
he application. Summing all power data for every function will give
he designer insight in the potential power needs of the product.
he model is presented in [4,14] and validated with two commer-
ially available fuel cells systems produced by Smart Fuel Cell (SFC)
17]: the Jenny (25 W,  400 Wh)  and the Efoy2200 (90 W,  5.5 kWh).
he output of the model showed a wide range in the predicted sys-
em volumes, making the model too generic with a low accuracy. A

ore accurate approach is desired which is presented in this paper.

.3. Second order model: database-driven metrics-based design
The first order model described in the previous section gives a
uick impression of the feasibility of a DMFC power system applied

n a portable electronic device. Problems with this model are the
i) accuracy of the model, (ii) the low amount of properties to opti-
r Sources 196 (2011) 8472– 8483 8473

mize for, and (iii) the lack of a single metric, showing the product
designer the improvement opportunity.

One part of design and engineering is the act of sizing, dimen-
sioning and selecting the detailed elements of the design. This part
of the design process can be used to test the feasibility of different
design concepts, by using the computer to evaluate multiple design
solutions on one or more parameters. In general the designer can
only evaluate a limited amount of structural variants (often less
than five) on a limited amount of objectives (often only volume),
with a low amount of differentiating components. Within these
structural variants there are variables which specify the main pro-
portions, like weight, dimensions and costs, but also other details of
the application. To test the feasibility of different concept design,
and not only structural variants, a “quantified optimum design”
method can be used. Quantified parameters are used to evaluate a
concept with the help of the computer which can evaluate a greater
deal of concepts in less time than a designer could.

For the second-order model the accuracy could be improved by
evaluating multiple structural variants with the help of the com-
puter. All structural variants are generated by the computer and
are build up from standard building blocks (parallelepipeds), rep-
resenting all basic components needed in a fuel-cell system. New
metrics are introduced for all basic properties, and an objective
function is defined with whom the design is evaluated by. In Sec-
tion 3 the second order model is proposed using the computer to
evaluate multiple structural variants and optimized for three basic
properties: volume, price and weight. Components are chosen from
a database consisting of geometrical and non-geometrical data.

3. Second order model

In this section a different approach is proposed to test the
feasibility of a fuel cell system in a specific application. The approxi-
mation does not consist of a simple formula but evaluates multiple
architectures, or structural variants. The evaluation is based on a
multi-parametric optimization algorithm, where volume, weight
and costs are the three basic properties.

In this section an introduction is given on preference-based opti-
mization, followed by an explanation of all metrics which will be
optimized for. To facilitate understanding, comparison and weigh-
ing of the effect of different properties, all properties are made
dimensionless. The dimensionless properties are called metrics M
appropriately and are not all equally important. The importance of
the metric is defined by the preference factor �, and the values are
based on the values found in [18]. Multiplying the dimensionless
factors with the specific preference factors gives the function F(D)
to optimize for. The optimization function is applied in the design
algorithm proposed in Section 3.9.  The optimization function is
used to find the most optimized architecture of a DMFC system
applied in a specific application. The algorithm presented is evalu-
ated by applying it to the design of a DMFC system for the Samsung
YP-Z5F MP3  player.

3.1. “Automated design” approach

The approach proposed in this section is a numerical evaluation
of multiple structural variants optimized for a single objective con-
sisting of different dimensionless metrics. The computer is used to
do more than merely analyze engineering designs, but also makes
design decisions and lead the design to an improved solution, in
short an “automated design” approach. In this automated design

process an optimization algorithm is used to optimize the system
for the basic metrics. In literature the approach for optimized layout
design is used in aeronautical environments, where the 3D packing
problem with performance constraints is generally impossible to
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3.5. Explanation of metrics

Following this procedure of the weighted sum method, the met-
rics used have to be defined. Three basic properties are proposed for

Feasible  regi on 

λ1 

λ2 

Decrea sing F(D) 

f1 
ig. 1. Definition of the translation vector rt , the rotation vector rr and the rotation
ngle � for a specific component i.

olve only by engineers experience and intuition [19,20], but also
n the design of circuit boards and IC chip layout [21] and loading
f ships, trucks and trains [22].

.2. Design variables

The numerical quantities for which values are to be chosen in
roducing the design will be called “design variables” [23]. For the
MFC system the position in space and rotation of the different
omponents are design variables. Amongst other properties we
ant to minimize volume of the total design by changing these

ariables. All design variables can be combined in a Design vectorD,
hich simply is a list containing all the design variables for a par-

icular problem. For the case study the only design variables used
o define a solution is the placing of components in space:

�
 =
(

(�rt, �rr, �)1, . . . , (�rt, �rr, �)i

)
, for i = 1, 2 . . . n (1)

here rt, rr and � are the translation vector, the rotation vector
round which the object will rotate about, and the angle to rotate
espectively for all n objects in the design. The objects in the design
re components, amongst others the fuel cell, fuel tank and pumps.
very combination of these variables refers to a specific architec-
ure or placing of objects related to each other in space (Fig. 1).

.3. Design constraints

At this point a design is now simply a set of values of design
ariables defined by the design vector D. It must be noted that the
ize of the components are taken from a database of components
hich are chosen based on their performance specifications (see

ections 5 and 5.3). To produce an acceptable design restrictions are
ntroduced, further called the “design constraints”. There are three
ategories of constraints: side constraints, behavior constraints and
onstraints arising from a discrete-valued design variable [23].

A constraint restricting the range of design variables for other
han the direct consideration of performance is called a side con-
traint. In our design example a side constraint is amongst others
he systems length that should be in between a minimum and max-
mum:

(D) = 0.5lbattery ≤ lsystem ≤ 1.5lbattey (2)

In the above example the minimum and maximums systems

ength is related to the benchmarked value used in the application,
n our case the length of the battery.

A constraint derived from the performance or behavioral
equirements is called behavioral constraint.  A behavior related con-
r Sources 196 (2011) 8472– 8483

straint is in our case amongst others the design of the fuel tank
which is related to the energy E needed in the application:

h(D) = lthtwt = E(u�)fuel (3)

A discrete-value constraint is a constraint which arises when the
design variable is not selected from a continuous range of values
but is permitted to take only one of discrete values. In our case the
rotation angle is constrained to rotations in quantities of 1/2�:

j(D) ≡ � = k
1
2

�, with k ∈ Z (4)

3.4. The objective function

In general the goal of multi-objective optimization is to find a
set of solutions as close as possible to the Pareto optimal front, Fig. 2
[24]. This means there is more than one optimal solution (which is
always the case) to the multi-objective optimization problem. In
Fig. 2 an optimized Pareto front is created by changing the prefer-
ence factor �i for both the optimized functions, or the objectives, f1
and f2, where fi = �iMi. The gradient of the lines in the figure describe
the importance of the different optimized functions. By changing
the preference factors the Pareto optimal front is created. A change
in the preference factors will result in a different optimal solution.
The factors should therefore not be arbitrarily chosen. To find the
best trade-off the results from the conjoint analyses are used to
produce the best set of preferences.

Preference bases multi-objective optimization is often used to
simplify a problem to a single objective optimization problem,
resulting in a single solution, the combined optimization function.
The method used in this work is called the Weighted Sum method
[24], which scalarizes a set of metrics into a single objective func-
tion F(D) by pre-multiplying each metric Mi(D) with a user-supplied
weight �i:

min  F(D) =
m∑

i=1

�iMi(D) (5)

All metrics used have to be handled and converted in the same
type, a maximizing or minimizing metric. The object metrics in our
case are all of the minimizing type: minimizing volume, minimizing
weight and minimizing costs. Dimensional unit effects are taken
out of the picture by making all metrics dimensionless, resulting in
normalized metrics Mi.
f2 

Fig. 2. The weighted sum approach for a convex objective space.
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se in the second-order model: volume, weight and costs. To sum
he minimizing properties to each other we have to make them
imilar in dimension. To do this the properties are normalized to
he specifications of the benchmarked power source used in the
pplication. This means the calculated costs for the DMFC power
ystem is divided by the costs of the benchmarked lithium polymer
attery:

C = Cfc−system

Caccu
(6)

The same thing can be done with the other two basic properties:

m = mfc−system

maccu
(7)

nd:

V = Vfc−system

Vaccu
(8)

Weight and dimensions are taken from specifications sheets for
ll components. To make an assumption for the “purchase price” the
osts for the benchmarked power source and all components used
n the fuel cell system are set at a price per piece when purchasing
00 pieces.

.6. Relative preference factor �

The optimization function depends on three metrics defined in
he previous section. It is impossible to find the optimum in which
ll metrics are minimized, making a trade-off necessary. Because
ome metrics are more important than the others, the preference
actor �i is introduced. The preference factor gives the importance
f the specified metric compared to the other metrics. All prefer-
nce factors summed together must be equal to 1:

m

i=1

�i = �1 + �2 + . . . + �m = 1 (9)

Based on higher-level information, the preference factor is first
hosen.

.7. Presentation of the objective function

The objective function is defined and can be used in an
lgorithm, in search for the optimal design with the following min-
mizing function:

in  F( �D) = �CMC ( �D) + �mMm( �D) + �V MV ( �D) + p( �D) (10)

Subject to:

g1( �D) ≡ 0.5lbattery ≤ lsystem ≤ 1.5lbattery

g2( �D) ≡ 0.5hbattery ≤ hsystem ≤ 1.5hbattery

g3( �D) ≡ 0.5wbattery ≤ wsystem ≤ 1.5wbattery

g4( �D) ≡ �C + �m + �V = 1
g5( �D) ≡ 0 + �C ≤ 1
g6( �D) ≡ 0 ≤ �m ≤ 1
g7( �D) ≡ 0 ≤ �V ≤ 1
h1( �D) ≡ lthtwt = E(u�)fuel

h2( �D) ≡ lfc = wfc =
√

Pnom

nfc − Vcell
− 1

icell
− nfc

2

j( �D) ≡ � = k
1
2

�, with k ∈ R

p( �D) =
{

0 if Obji /∈ Objj
n other
intersection

here g1(D) to g3(D) define the search field in which the optimiza-
ion may  take place, and g4(D) to g7(D) define the field for the
reference factors �. The behavioral constraints h1(D) and h2(D)
r Sources 196 (2011) 8472– 8483 8475

define the flexible components (explained in Sections 4.5 and 4.6).
To decrease computation time the values for rotation of the objects
is restricted to discrete values by j(D). The penalty factor p(D) is
introduced to the function when objects from the component set
intersect with each other.

3.8. Preference factors

To define the relative preference factor � a conjoint analysis has
been performed to give more insight in the factors influencing the
user’s choice when buying a cell-phone and a laptop computer [18].
The conjoint analysis is a method to find out the importance of
several properties of a product. By applying the method it is pos-
sible to find out about the priorities of properties, as well as the
referred value of each property itself [25]. Five properties are inves-
tigated and the average importance score for these properties are
described in Table 1. We  can use the average importance score as
the preference factor for the five properties investigated.

In this research only three basic properties for optimization are
defined namely volume, weight and costs. To define the preference
for these basic properties the five properties investigated in the
conjoint analysis are reduced to three. “Charge–time” and “time of
use” is left out of the equation, and the resulting distribution is pre-
sented in the latter two columns of Table 1. The average importance
score shows that for smaller products, like the cell phone, volume
is the most important factor influencing the buying behavior of the
consumer. For larger portable products, like the laptop computer
this distinction is less visible.

3.9. Presentation of the optimization algorithm

Fig. 4 shows the flowchart of the algorithm which not only min-
imizes the objective function but also chooses the components
based on simple performance specifications. The algorithm consists
of three parts: the performance input and component selection, the
multi-parametric optimization and the part presenting the results
graphically and in data files.

3.10. Part 1: performance input and component selection

In part 1 the user has to input performance data of the appli-
cation he/she wants to analyze. The performance data consists of
a load-profile for one cycle and data of the benchmarked power
source used in the device, like size, weight, costs and energy
specifics. Based on these parameters the algorithm will calculate
the required physical characteristics of all flexible components (as
the fuel cells and fuel container) and design them, and make the
choice for non-flexible components out of a database by match-
ing the required performance with the actual characteristics of
commercially available components (fuel and air pumps, and the
intermediate accumulator). For every component the algorithm
will choose one candidate, which fits with the performance needs
of the component and has the lowest value of the objective func-
tion. All candidate components are listed in a component set which
will be optimally placed in 3D space in part 2.

3.11. Part 2: multi parametric optimization

A combination of components is arbitrarily chosen and listed
in a component set.  For this set n initial solutions are defined. One
solution is described in the form of a Design vector D, describing the
placing of all components in space. The solutions are constrained by

the design space defined by the different design constraints gi(D),
hi(D) and ji(D). An initial design vector is defined D[0,0], which
is tested on possible intersection of objects (line–plane intersec-
tion). If the objects do not intersect a feasible solution is generated.
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Table 1
Average importance score of the five properties derived from the conjoint analysis [18], and the used values for the algorithm (right two columns).

Conjoint analysis Numbers used in algorithm

Type of product Small handheld Large portable Small handheld Large portable
Example Cell phone Laptop computer Cell phone Laptop computer

�C Costs 0.22 0.24 0.34 0.37
�t,charge Charge time 0.17 0.18 – –
�t,use Time of use 0.18 0.17 – –
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1 
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�m Weight 0.09 

�V Volume 0.34 

��  1 

he architecture of this feasible solution is analyzed by calculating
he size of the bounding box, its volume, the costs of the sys-
em based on the components costs and the weight of the total
ystem.

New design vectors D[0,j] are generated, based on the initial
esign vector D[0,0]. The new design vectors are generated in the
eighborhood of the initial design vector and are called neighboring
esign vectors,  see Fig. 3. The design vector for five objects is defined
s follows:

� [i, j] =
(

(�rt[i, j], �rr, �)1, . . . , (�rr[i, j], �rr�)5

)
(11)

here: rt = a randomly generated vector for the translation of
ll objects depending on the dimensions of the benchmarked
ower source: rt = R(ldatum, wdatum, hdatum), with R ∈ [0,100]/100;
r = vector for the initial radius angles of all primary design vectors
[i,0]; � = a randomly generated angle ∈ [−�,−1/2�,0,1/2�]; i = the
rimary design vector number, with i = 1 . . . n; j = the neighboring
esign vector number, with j = 1 . . . m

The following procedure is followed:

. Components are selected based on the objective function (Part
1).

. The rotation vector rr and the angle to rotate about � are fixed at
start based on its intrinsic form.

. The largest component is set as the base at start.

. The primary design vector D[0,0] is evaluated and a random
cloud of neighboring design vectors D[0,j] is generated within
a maximum defined range r0.

. The fitness of every neighboring design vector is calculated by

means of the objective function Fj(D) plus a penalty function
when intersection occurs p(D).

x 

y 
search field 

Neighboring 
design vectors 

D[i,j] 

primary design  
vector D[i,0] 

ig. 3. A 2D representation of the primary design vector D[i,0] for one object and
he generated neighboring design vectors D[i,j].
5 0.14 0.23
5 0.52 0.40

1 1

6. The “gravitational” mean of the cloud is calculated by:

�rcloud =
(∑20

j=0
�rt1 · |�Fji(D)|∑20

j=20|�Fji(D)|
, . . . ,

∑20
j=0

�rtobj(t) · |�Fjobj(t)
(D)|∑20

j=0|�Fjobj(t)
(D)|

)

for obj(t) = 1 . . . 5 objects

where j = 0 is the fittest solution from the previous iteration
and j = 1 . . . 20 are the solutions belonging to the new generated
cloud.

7. The cloud vector is subtracted from the primary translation vec-
tor rt, consisting of all translation vectors of all objects, and the
sign of every object in the design vector can be determined. A
new primary design vector is generated with the new translation
vector rt equal to:

�rt[i + 1, 0] = �rt[i, 0] − sign(�rt − �rcloud)r0

With r0 = �R, where  ̨ is a randomly generated number in
between 0 and 1, defining a limiting search field with a maximum
radius R.

8. Repeat until the maximum number of generations is reached or
convergence is reached.

3.12. Part 3: presentation of the results

Based on a single component set the optimal layout is defined
by the final design vector D[n,0]. The architecture of this design
is presented in a 3D graphic, together with all generations of best
options made on the road towards this optimal (Fig. 4).

4. Case study: a DMFC power system for a MP3  player

To test the algorithm as described in the previous section a pro-
gram is written to design an optimized DMFC system for a MP3
player. The program is written in Mathematica [26]. This section
describes the algorithm by means of the case-study: the design of
a DMFC power system powering the Samsung YP-Z5F MP3  player.

4.1. Performance input data

The data inputted by the user is in the form of load profile of
one cycle. In the case of the MP3  player this is the coarsened load-
profile of the WMA  file (- - -) as pictured in Fig. 5. The power data
is imported as a list of power in mW versus the time in seconds.
The benchmarked battery specifications are inputted as a list of the
capacity (mAh), the working voltage (V), the weight (g), price (D )
and its dimensions (mm).

4.2. Introduction into component selection
With the data imported the algorithm will select non-flexible
components from a database of commercially available compo-
nents and designs flexible components matching the performance
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Fig. 4. Flowchart of the automated design procedure.
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Table 2
An excerpt of the fuel-pump table in the component database.

Brand Type V (V) P (mW)  Max  flow (mL  min−1) l (mm) w (mm) h (mm) m (g) Price (D 100+)

Bartels MP5  Diaphragm, piezo 250 200 5 14 14 3.5 1 0.1
Bartels MP6 Diaphragm, piezo 250 200 6 30 15 3.8 2 0.1
thinXXS MDP1304 Diaphragm, piezo 5 250 10 25.4 26.2 7.5 3 0.1
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thinXXS MDP2205 Diaphragm, piezo 5 250 

HNP  MZR2521 Annular gear, electromagnetic 18 3000 
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equirements of the device. In basis the DMFC system consists of
ve main components:

. air pump (non-flexible)

. fuel pump (non-flexible)

. intermediate accumulator (non-flexible)

. fuel cell stack or flat pack (flexible)

. fuel tank (flexible)

Other components like the fuel-water mixer and mixing cham-
er, water condenser, air filters and other minor components are

eft out of this optimization because of lack of information about
hese components or the low impact on volume or weight. It is also
ssumed that the controller will be integrated on the PCB of the
evice.

Data from non-flexible components is extracted from a table
CSV file) imported in the code. A component is represented by its
uter bound dimensions (length, width and height), its weight, its
rice, and performance specific variables. A component is repre-
ented as a parallelepiped (or a Cuboid in Mathematica) by only
ts height, width and length parameters. In Table 2 an excerpt for
he fuel-pump table is shown. The choice for a specific component
s based on its performance characteristics. For the air pump and
he fuel pump this is the maximum flow (mL  min−1) and for the
ntermediate accumulator this is the voltage (V) and the capacity
mAh). The ordering is done on basis of the minimized value of
hese performance characteristics.

.3. Air and fuel pump selection

The air and fuel pump are selected on their fuel-flow perfor-

ance. For every pump in the table the maximum air or fuel flow

s entered. On basis of the load profile, the air and fuel flow needed
s calculated. Methanol crossover over the cell is hereby neglected.

Fig. 5. Load profile for one WMA  and MP3  file.
 26.2 25.4 9 3 0.1
68.8 13 13 56 0.1
. . . . . . . . . . . . . . .

The following equations are used to calculate the mass (g min−1)
and volume flow (mL  min−1) [27,28]:

ṁ = xM
Pmean

VcellneF
�stoch60 (12)

And:

V̇ = ṁ

�

where: x = amount of moles used/produced in the reaction;
Pmean = required mean power [mW];  Vcell = one cells volt-
age = 0.32 V; ne = the amount of electrons per mole = 6; F = Faradays
constant = 96485 Coulomb; � = density of the medium [g mL−1];
M = molar mass [kg mole−1]; �stoch = the stochiometric ratio at the
anode and cathode.

In the reaction of the fuel cell three media will react, water
(H2O), methanol (CH3OH) and oxygen (O2), in our case as part of
air. In Table 3 the values needed to calculate the fuel flows for these
media are listed. Besides these values the mass and volume flows
are calculated needed to match with the nominal power of the MP3
case (Pnom = 150 mW).

Besides for reaction water is also used as a carrier for the fuel to
the membrane. Methanol is normally diluted in water at a percent-
age equal to 3%m (2.3%v), resulting in an extra water flow needed:

V̇H2O|mix = V̇CH3OH

2.3%

And thus the total fuel flow at the anode is equal to:

V̇liquid = V̇CH3OH + V̇CH3OH

2.3%
= 0.75 mL  min−1

At the cathode the fuel flow consists of oxygen. Because the
design does not include an oxygen tank but the oxygen from air
is used, and thus air has to be pumped around. The oxygen per-
centage in air is equal to 21%, resulting in a fuel flow at the cathode
equal to:

V̇air = V̇O2

21%
= 14.6 mL  min−1
Based on the calculated fuel flows at the anode and cathode
the pumps can be selected, from a table consisting the dimensions,
weight and, when available, price (for 100 items).

Table 3
Specific fuel characteristics for the used media in the DMFC.

H2O CH3OH O2

X 1 1 1.5
M  kg mol−1 0.018 0.032 0.032
�  10 10 2
�  g mL−1 1.0 0.79 0.00143
ṁ g  min−1 0.000146 0.01325 0.00398
V̇  mL  min−1 0.000146 0.01677 2.7798
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.4. Intermediate accumulator selection

The intermediate accumulator is selected by matching the
apacity of the battery with the required capacity when the bat-
ery has to be discharged and charged within one cycle, when the
attery is discharged at a depth of discharge (DOD) equal to 80%:

 = 1
80%
∑tcycle

t=0 P − Pnomt|
The dimensions, weight and, when available, price (for 100

tems) is taken from the table.

.5. Dimensioning the fuel cell

The fuel cell is the first flexible component in our component
et. The fuel cells are designed as if they were custom build for the
pplication. The designer has to indicate if the fuel cell is stacked
r is designed with flat-pack architecture. The latter design is more
oluminous but has the advantage of being thin, and thus fitting a
hin product design.

The design of the fuel cell stack is based on the design from
29] working at a cell voltage of Vcell = 0.32 V at a current density
f icell = 140 mA  cm−2. The number of cells needed is based on the
aximum battery voltage:

fc =
[

Vbattery

Vcell

]
(14)

When assuming a flat pack design the required active area of
he membrane can be calculated with:

cell = Pnom

nfc · Vcell

1
icell

nfc

2
(15)

And thus the length and the width of all of the cells, when assum-
ng a squared fuel cell flat pack architecture:

cell = wcell =
√

Acell (16)

The thickness of the fuel cell flat pack is taken to be equal to the
hickness of two endplates making use of the innovative mono-
olar architecture with a thickness of 0.8 mm  for two cells [30].

Weight is calculated based on density numbers taken from
he Motorola case [12] equal to �fc = 2.078 kg L−1. Prices are based
n the price for one hundred square centimeters of Membrane
lectrode Assembly (MEA) taken from [31] (May 2010), equaling
356.36, and thus $c3.56 or D c2.97 per mm2. The MEA  used in the
esign has an active area of 1420 mm2, making the price for only
his component equal to D 42.17.

.6. Dimensioning the fuel tank

The second flexible component is the fuel tank, which has to
atch with the energy need for a single charge. The dimensions of

he fuel tank are flexible and can be used to fill up empty space. In
ur algorithm we have assumed the length and width of the tank
e equal to the length and the width of the benchmarked power
ource. For the MP3  player this is equal to 66 and 33 mm.  The thick-
ess of the fuel tank is a result from the matching volume needed
o store the required amount of energy (820 mAh  at 3.7 V) and the
mount of water described by cmeoh which is in our case equal to
/2 (the amount of water equals the amount of methanol). The total
hickness of the fuel tank is now equal to:

E

tank = battery

cmeoh�Emeoh
ltankwtank

The weight of the fuel tank can be calculated with the density
f water (1 kg L−1) and methanol (0.79 kg L−1). Price is assumed
Fig. 6. Optimization of the objective function F(D), for n primary design vectors
D[n,0] and m = 20–40 neighboring design vectors.

to be equal to the price for a fill-pen refill, where a five-pack of
1.45 mL  cartridges costs D 1.90 [32], resulting in a price-density of:
D c0.131 mm−3.

4.7. Ordering of components

A list of components is selected based on the performance
requirements imported by the user. A list of compliant components
is chosen and sorted on the minimum value of the objective func-
tion. For both the flexible components, the fuel cell and fuel tank
designs match the performance requirements and thus no ordering
is needed.

4.8. Test run results

The component selection is again based on the objective func-
tion and listed in Table 4. The algorithm is tested by conducting
several runs, where the starting translation vector is changed. Three
of five runs are plotted in Fig. 6, where all best values of F(D) are plot-
ted for every primary design vectors D[i,0] with i = 0 . . . 300–500
and a cloud of n = 20 neighboring design vectors. Fig. 7 shows the
design at start and finish of the Run 1 to 3. The 300–500 iteration
runs take up 15–30 min  on a Dell PC (Pentium Intel Core 2Duo CPU
E8400@3Ghz, 1.97 GHz, 3.25GB RAM).

The algorithm is evaluated several times and the objective func-
tions value is converging generally nearing 2 for run 1 and run 2.
Run 3 converges to a higher value nearing 3. To test if this starting
point will converge to the minimum value in new evaluations, this
run is repeated. In Run 4 the number of evaluations n is increased
from 500 to 1000 (Fig. 8a). In Run 5 the number of neighboring
design vectors m is increased from 20 to 40 (Fig. 8b). The con-
vergence of these test are also shown in Fig. 6, and do not see a
convergence nearing 2.

4.9. Evaluation

The convergence of the algorithm is quick and minimizes to
a low value of the objective function. The test is evaluated three
times with different starting points. This test shows that the starting

point influences the end-result, even after increasing the number
of evaluations or the number of neighboring design vectors. Thus
random generated start-points can converge to different local min-
ima, which is not always the best case minimum. To test if the
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Table 4
Overview of selected and designed components for the DMFC system applied in the Samsung YP5 MP3  player.

Component Type Length (mm)  Width (mm)  Height (mm)  Volume (mm3) Weight (g) Price (EUR)

Air pump Bartels MP5  14 14 3.5 689 0.80 n.a.
Fuel  pump ThinXXS MDP2205 26.2 25.4 9 5986 3.00 n.a.
Accumulator Varta CR1/2AA 14.75 14.75 25.1 5460 11.50 n.a.

D
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w

F
a
m

Fuel  cell flat pack Nafion 117 [29] 37.7 37.7 

Fuel  tank CH3OH:H2O = 1:1 66 33 

Total  

MFC system is a good alternative to the benchmarked battery,
he optimization run has to be repeated several times.

Viewing the end results in Figs. 7 and 8 show that the form of
he fuel cell, which is the large squared form, is inefficiently chosen.
f the fuel-cell has the form of a rectangular object, the packing
atio will decrease. The automated design procedure of this flexible
bject has to be redefined.

. Discussion on the results
In the following sections the optimization algorithm, includ-
ng the component selection, and the results from these
ptimizations are discussed based on volume, costs and
eight.

ig. 7. Convergence of the algorithm for three algorithm evaluations with three different s
re  shown on the right side. (a) Run 1 where n = 300 evaluations and m = 20, starting with

 = 20, starting with F(D) = 17.56 and finishing at 2.11 (27 min). (c) Run 3 where n = 500 e
0.8 1141 2.37 42.17
2.53 5516 4.94 7.23

18,793 22.60 >49.40

5.1. Algorithm

In the case study presented in this paper multiple structural
variants are generated for DMFC power systems powering the Sam-
sung YP-Z5F MP3-player with a peak and nominal power of 360
and 120 mW,  and a capacity of 3034 mWh.  The structural variants
are evaluated and optimized for the minimum value of F(D). Three
properties for optimization are introduced: volume, weight and
costs, which are reduced to corresponding metrics M.  To test the
working of the algorithm the preference factor � for volume is set
to 1 and the rest (weight and costs) are set to 0.

The evolutionary algorithm proposed calculates the feasibility

of a DMFC system with a low number of calculations converging to
an improved objective function F(D). The evolutionary algorithm
also produces a design with a low value of the objective function
to almost 2 whereas the theoretical minimum is 0.99 (see also Sec-

tarting points (a, b and c), as shown at the left side. The results after the optimization
 F(D) = 13.51 and finishing at 2.28 (16 min). (b) Run 2 where n = 500 evaluations and
valuations and m = 20, starting with F(D) = 25.61 and finishing at 3.68 (27 min).
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Fig. 8. Evaluation of Run 3 but with (a) an increase of the number of iterations,
n  = 500 → 1000 (at m = 20) and an increased number of points in the cloud from
m  = 20 → 100 (n = 500). (a) Run 3 again, where n = 1000 evaluations with m = 20, start-
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Fig. 9. Volume breakdown, without empty space, of the generated DMFC

the feasibility of the system compared to benchmarked battery. One
ng with F(D) = 25.61 and finishing at 2.84. (b) Run 3 again, where n = 500 evaluations
ith m = 40, starting with F(D) = 25.61 and finishing at 3.16.

ion 5.2). The algorithm starts with a randomly generated starting
oint, which not always results in the smallest value of the objec-
ive function. It is thus proposed to do several runs to test if the
MFC system is a good alternative to the benchmarked battery.

The algorithm is only useful when the load-curve is available.
uring the conceptual design process this is not always the case,
nd the designer should make a guess about the power over time
or one cycle and over one charge. A small change in the load profile
ould mean a great difference in the selected component set, mak-
ng the use of accurate load-curves a necessity when the designer

ants to test the feasibility of a DMFC system. This makes the
lgorithm interesting for products already developed, where the
oad profile is known, and less for new to develop products, where
he load-profile is based data from similar products or a previous
ersion of the device.

.2. Volume

The algorithm is used to optimize merely for volume. The results
hould present a final solution with a low amount of empty space,
nd a high packing ratio. The final design after the test run shows
hat this is not the case with a packing ratio nearing 2. The empty
pace in the generated DMFC system is more than 50% of the total
olume. The sizing of the fuel-cell greatly influences this packing
atio. If the automated design of this flexible component takes the
aximum width into account the packing ratio could decrease.
When comparing the total volume of only the compo-

ents (8659 mm3) with the volume of the benchmarked battery
8720 mm3), it shows the selected component-set can lead to solu-
ion nearing that of the benchmark. If we look at the volume
reakdown in Fig. 9 of all components we notice that the fuel tank
akes up the most space. It must be noted that the tanks consists
f a water and a methanol tank (50/50). If a 100% methanol tank

s feasible than the value of this component will be halved. In the
lgorithm the interconnections like wiring and tubing is not taken
nto account, thus extra volume will be added.
system (E = 3034 mWh, Psyst = 600 mW,  Pfc = 127 mW,  Vtotal = 18,428 mm3,
Vcomp = 8659 mm3).

The DMFC system is only feasible with the chosen component
set when empty space equals zero and no extra components or
interconnections have to be added. An existing DMFC systems like
the SFC Jenny [17] has an empty-space ratio of 15%. This product is
optimized for volume and the amount of empty space is minimized
to the maximum. Adding 15% to the current chosen component-set
volume will result in a minimum feasible packing ratio of 1.15. Con-
cluding from this the volume is a bottleneck in the current selected
component-set, and thus will be a bottleneck for the feasibility of
DMFC systems as an alternative for the lithium-ion battery when
applied in the MP3  player case.

Note that costs and weight are not taken into account in the opti-
mization algorithm, thus it is unknown if the selected components
were selected as the primary component set when those factors
were included. The algorithm is a good tool supporting the designer
to place the components in the most opportune way, minimizing
systems’ bounding-box volume.

At the moment the algorithm makes use of only commercially
available components. Besides the limited amount of alternatives,
often candidates are over-dimensioned. The list should be updated
and scalability of components should be an option added to the
algorithm. When scalable components are introduced in the algo-
rithm, it will produce designs which are feasible on the long term.

5.3. Weight

In Fig. 10 the weight break down is plotted for the DMFC system.
The fuel tank is the heaviest component of the system. The total
weight of the component-set selected is 10.7 g making this system
half the weight of the benchmark (21 g), and thus in this respect
very feasible. It must be taken into account that weight for wiring
and plumbing is not yet added to the weight, which will result in a
small increase of the total system weight.

5.4. Costs

In the last column of Table 4 the prices for all components are
listed individually. The prices for non-flexible components are not
always available, which makes it difficult to draw conclusions on
thing can be noticed is the price for the fuel cell flat pack. The price
is based on 100 cm2 MEA  [31] and is in this case a large contribu-
tor to the total price of the system. Compared to the price of the
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Fig. 10. Weight breakdown of the generated DMFC system (mtotal = 10.71 g).

enchmarked battery, the price for only the MEA  is almost 84% of
he total price of the battery (D 50).

According to Darnell [33] the MEA  accounts for 40% of the total
MFC costs and 60% can be carried back to assembly and other
omponents. Using this number the total price for the DMFC sys-
em would then be D 105, making the initial price for the DMFC
ystem a factor two higher than the lithium-ion battery used, at
ame specifications. This makes the DMFC system, at the moment,
conomically not competing with the benchmark.

Besides the high price for the MEA, prices for different com-
onents are not always available and liable for change. Because of
he lack of price data for non-flexible components, the optimization
ith costs as part of the optimization function is not feasible within

he algorithm at the moment. The component database should be
xtended with more optional components, and with more data,
pecifically on price.

. Conclusions

In this paper an algorithm is proposed, and implemented in a
athematica program, which consists of three parts: (1) selection

f components into a component set, (2) evaluation of multiple
tructural variants and (3) presentation of the results.

In part 1 The best fitting component set is selected based on
he objective function F(D)and used to generate multiple structural
ariants. The structural variants are optimized by minimizing the
alue of the objective function.

In part 2 several structural variants are produced, which are
valuated with the objective function. To test the program the opti-
ization is only based on volume, and not on all three defined

asic properties. An evolutionary algorithm is used to converge to
 minimized value of the objective function in a low amount of
alculations. The test run shows a convergence to a low value of
he objective function nearing 2, in a low number of iterations. The
onvergence depends strongly on the starting point of the opti-
ization, and thus several starting points have to be evaluated to

e sure it will converge to the lowest value of several local minima.
In part 3 the design proposal is plotted in a 3D view. From these

esign proposals it can be concluded that the feasibility of the DMFC
ystem strongly depends on the components’ volume and costs. The

otal weight of the summed components, in de component-set, is
0% of the weight of the benchmarked battery, and thus no issue
or the feasibility. The test run converges to the lowest value of the
bjective function nearing 2, whereas the theoretical minimum is
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0.99. This means the DMFC system will be twice as large as the
benchmarked battery. This can be decreased by a change the size
of the fuel-cell from a squared to rectangular form, and make use of
a 100% methanol fuel mix  instead of a 50/50 water–methanol fuel
tank.

The feasibility of price is difficult to test. For non-flexible com-
ponents prices are not always available, and a small amount of
different options are available. The prices for the components are
based on commercially available sale prices when 100 pieces are
bought. The price of the MEA  is also based on sale prices from the
fuelcellstore [31], and the MEA  only will cost D 42. This price for the
MEA alone is 84% of the total price for the benchmarked battery.
The total sale price of the component set selected by the algorithm
is higher than D 53. An estimate based on the figures given by Dar-
nell [33] result in a total price for the DMFC system equaling D 105.
At same specifications this price is twice the price of the lithium-
ion battery used, making the DMFC system not a commercially
attractive alternative.

7. Recommendations

The amount of commercially available components which can
be used in 0–100 W DMFC systems is low. Smaller components
matching low-power DMFC systems have to be developed. To
address this lack of components the algorithm could be intro-
duced with scalable non-flexible components. These components
are based on existing components but scaled up or down to match
the required performance specifications. Scalable components give
the designer an indication of the long-term feasibility and the con-
straints of having to develop new components.

The algorithm can evaluate multiple structural variants with the
objective function as optimization variable. The use of tables and
computerized producing structural variants is a clear way  of mak-
ing quick conceptual feasibility tests. In our case the feasibility of
the DMFC system is tested as an alternative to the benchmarked
rechargeable battery. The tables for non-flexible components are
easy to update to current available components. The algorithm uses
only the three basic properties for optimization, and extending the
number of properties is proposed for the third-order model. Fur-
thermore the algorithm evaluates only structural variants where
components are represented by simple parallelepipeds. This rep-
resentation does not follow the form of the actual component very
accurate. To improve the accuracy of the model the objects should
be represented by other forms like cylinders, but also by combi-
nation of forms. Interconnections are not taken into account in
the second-order model and the third-order model should include
these in the algorithm. A fourth order model can also include the
influence of heat, fluid flow and other multi-physical parameters.
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